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An Improved Thin-Wire Model for FDTD
Riku M. Mäkinen, Member, IEEE, Jaakko S. Juntunen, Member, IEEE, and Markku A. Kivikoski, Member, IEEE

Abstract—An improved thin-wire model for the finite-difference
time-domain method is proposed. The new model can be used to
accurately model straight wire sections connected to other metal
structures. In addition, the model includes the effect of charge ac-
cumulation at wire end caps. The end-cap model is based on con-
servation of charge and Coulomb’s law. Using the end-cap model,
unconnected wires such as wire antennas are also accurately mod-
eled. The results indicate a significant improvement in predicting
the resonance frequency of a dipole antenna.

Index Terms—FDTD, sub-cell model, thin-wire model.

I. INTRODUCTION

SUB-CELL models are used in finite-difference time-do-
main (FDTD) method to describe small geometrical details

without resorting to a large number of smaller cells. Sub-cell
thin-wire models are widely used in antenna problems such
as modeling of wire antennas or as a part of the antenna or
waveguide feed structure. In either case, the computed input
impedance or scattering parameters are affected by the accuracy
of the thin-wire model. In addition to the wire radius, accurate
modeling of wire length should be considered if the wire ends
are not connected to other structures.

In the standard thin-wire model [1] static field distribution
is assumed for the scattered field components adjacent to the
wire. The sub-cell geometry of a wire is modeled using the con-
tour-path integral formulation of FDTD. Modifications to the
standard model have been proposed, such as in [2], where fur-
ther assumptions on the field distribution near the wire ends are
made. A different approach is presented in [3], where FDTD is
formulated as the time-domain finite-element method, and static
field solutions are incorporated by modifying the basis functions
near the wire.

A filamentary hard source and a filamentary perfect elec-
tric conductor (PEC) wire implemented by setting an electric
field component on a wire axis identically to zero are known
to have a finite effective radius . A method to obtain
of a two-dimensional (2-D) filamentary hard source was pre-
sented in [4]. By comparison to a frequency-domain Green’s
function, the value of was found to be between and

, where is the cell size. Due to the fact that a filamen-
tary PEC wire is effectively a hard source with the excitation
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function identically set to zero, the procedure of [4] can be used
to test the accuracy of a 2-D thin-wire model. This is done in [5],
where it is shown that the standard thin-wire model [1] does not
model the wire radius accurately in 2-D.

In addition to accurate modeling of the wire radius, modeling
of wire ends has a profound effect on the overall accuracy in
modeling of wire antennas. Both the standard wire model and
the three-dimensional (3-D) version of [5] have been shown
to suffer from the coarseness error affecting the length of the
wire [6]. A considerable improvement compared to the stan-
dard thin-wire model was achieved by introducing further as-
sumptions on the field distribution at the antenna ends based on
NEC-computed data [2]. However, only the wire ends are con-
sidered in [2].

In [5], a 2-D thin-wire model that accurately describes the
wire radius was proposed. The 2-D model reduces to a filamen-
tary PEC wire when the nominal wire radius is set to

, which is in agreement with the result given in [4]. In
this paper, the 2-D thin-wire model of [5] is extended into three
dimensions. In addition, an algorithm to model the wire end caps
is proposed. Instead of using precomputed field distributions for
field components near wire ends, as in [2], we begin with sim-
ilar assumptions that are used in NEC-4 to model the wire end
caps [7]. The proposed model describing the effect of charge ac-
cumulation at the wire ends is based on conservation of charge
and Coulomb’s law.

II. I MPROVED THIN-WIRE MODEL

The proposed model is based on the contour-path integral for-
mulation of FDTD, where the integral form of Ampere’s law
and Faraday’s law are enforced locally in each Yee cell [1]. The
Ampere’s law in free space is given by

(1)

where surface is a dual-grid cell facet bounded by contour
formed by dual-grid cell edges. Similarly, the Faraday’s law

in free space is given by

(2)

where surface is a primary-grid cell facet bounded by contour
formed by primary-grid cell edges.

The basic idea in the standard thin-wire model [1] is that it
incorporates static field solution into FDTD. This is also the
case with the proposed model. While the static field distribution
is only used as an approximation, it is consistently enforced on
all field components involved in the wire models [8].

0018-9480/02$17.00 © 2002 IEEE
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Fig. 1. Faraday’s law integration path for the looping magnetic field
components adjacent to a wire [1].

A. Looping Magnetic Field Components

Derivation of the looping magnetic field components ad-
jacent to the wire follows the derivation of a 2-D TM-mode
thin-wire model [5]. Let us consider computation of one of
the four looping magnetic field components adjacent to a
wire, as shown in Fig. 1. The looping magnetic field and the
radial electric field are assumed dependent in the radial
direction, where is the distance from the wire axis. For
example, an update equation for the looping magnetic field at
( ) can be found using (2). Assuming free
space, we have [1]

(3)

where is the nominal radius of the wire. Note that in (3)
represents the tangential magnetic field along a circular path
around the source, as shown in Fig. 2(a). Using a point value
such as in (3) in standard FDTD update equations is in con-
tradiction with the assumption that should represent the av-
erage value of the field along the Cartesian dual-grid cell edge.

In order to avoid this inconsistency, we project the looping
magnetic field components onto the respective Cartesian cell
edges prior to using them in the standard FDTD equations [2],
[3], [5]. Let us assume we have computed any of the magnetic
field components in Fig. 2(a) using (3). In order to project
into on a Cartesian cell edge, as shown in Fig. 2(b), we
use Ampere’s law as a starting point. Forming two integration
paths and around the wire, we have

(4)

For a rotationally symmetric case, the magnetic field is constant
along . The scaling factor is determined by the relative
length of the integration paths and

(5)

Fig. 2. Circular Ampere’s law integration pathC for a 1=r dependent
tangential magnetic field circulating the wire [5]. The field components are
projected onto the Cartesian cell edge onC prior to being used in the standard
FDTD update equations.

Fig. 3. Cross-sectional view of a nonuniform cell for computation of the
scaling factork for the magnetic field componentH . The wire axis is
located at originO. A magnified view of the shaded area is shown on the
right-hand side.

In a nonsymmetric case, values of the four looping magnetic
field components may differ from each other due to reflections
from other structures. Still, we may define a scaling factor for
each segment such that the line integral ofalong each cir-
cular segment remains equal to the line integral ofalong the
respective Cartesian dual-grid cell edge, i.e.,

(6)

Here, we assume and are constant on each of the four
segments of and , respectively.

The shape of the cells affects the value of. A cross-sec-
tional view of a cell with is shown in Fig. 3. In
order to compute the scaling factor for , the looping mag-
netic field component along a segment of the circle at dis-
tance from the wire axis is projected to the Cartesian cell
edge . Due to symmetry, we only need to consider half of
the cell edge shown magnified in Fig. 3. Let us consider pro-
jection of the looping magnetic field at point on to
the magnetic field along the Cartesian cell edge at pointon

. Due to the dependence, the amplitude of the mag-
netic field is decreased by a factor of . The direc-
tion of the magnetic field at is tangential to the path

. The component required in FDTD is obtained by pro-
jecting the tangential field component to the-direction, i.e.,
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. Integrating over and di-
viding by the length of path , we have

(7)

where projects the tangential magnetic field in the-di-
rection and the second term in the integrand is the attenuation
of the field due to an increase in the distance from the wire axis.
Integrating (7) gives

(8)

The scaling factor for is obtained in a similar manner
and is given by

(9)

Instead of scaling the value of the magnetic field, we use
the scaled value in standard FDTD update equations to
compute the adjacent electric field components.

B. Radial Electric Field Components

The radial electric field components adjacent to the wire are
computed using the standard FDTD update equations. However,
the scaled values (e.g., ) of the looping magnetic field
components are used. For example, the radial electric field com-
ponent at ( ) is given by

(10)

where projects the looping magnetic field components to a
Cartesian cell edge. The radial electric field computed using
(10) represents the average value for the electric field flowing
through a Cartesian cell facet , as shown in Fig. 4. The com-
puted value can be directly used in the standard FDTD update
equations to compute the adjacent axial magnetic field compo-
nents. However, in order to compute a looping magnetic field
component, as shown in Fig. 1, a dependent radial electric
field point value is required instead of an average electric field
through a Cartesian cell facet.

In order to obtain a point value for the radial electric field at
distance from the wire axis, the radial electric field compo-
nent is projected from a Cartesian cell facetto a cylindrical
surface , as shown in Fig. 4. Due to the assumption, the
radial electric field is also constant on surface. Keeping the
surface integral of unchanged, the scaling factor required
to project the electric field to the cylindrical surfaceis simply
determined by the ratio of areas of and as follows:

(11)

Fig. 4. Cylindrical Ampere’s law integration surfaceS for a1=r dependent
radial electric field component adjacent to the wire. The field component is
projected from the Cartesian cell facetS to the cylindrical surfaceS prior
to being used in thin-wire update equations.

Due to the fact that is equal on both surfaces and , the
scaling factor for the radial electric field is determined by
the transverse cell dimensions

(12)

(13)

which both reduce to when .
As with the scaling factor for the looping magnetic field

components discussed in Section II-A, the radial electric field
components themselves are not scaled. Instead, the scaled field
values are used in computation of the looping magnetic field
components.

C. Axial Electric Field Components

The axial electric field components within the perfectly con-
ducting wire are identically set to zero. As a field component in
FDTD represents the average value of that field through the cell
facet, zero axial electric field is enforced throughout the cell. As
a consequence, no displacement current is allowed to flow in the
axial direction and an assumption of static field distribution is,
therefore, enforced.

Connecting a source on a wire described by thin-wire equa-
tions is discussed in [8]. It is shown that the assumptions on field
distribution enforced in a delta-gap hard source [9] are consis-
tent with those enforced in both the standard model [1] and in
the proposed model. As a consequence, thin-wire equations can
be freely applied to a cell containing a hard source. No scaling
factor such as or is used for the axial electric field ex-
cited by a hard source. This is due to the fact that the area of the
cell facet the axial electric field flows through is not used in any
of the update equations. Therefore, no scaling based on area is
required. Note that while the axial electric field at the source is a
function of time, no displacement current flows through the cell
because the change in the axial electric field does not contribute
to the computation of any of the adjacent field components.

The resistive voltage source (RVS) [10], [11] allows displace-
ment current to flow through the source cell. This is in contra-
diction with the assumption of static fields enforced in thin-wire
equations. Consequently, limitations in a stable range of values
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for wire radius or time step result if either standard or re-
vised thin-wire equations are used in a cell containing an RVS
[8]. It is likely that the problem is related to correctly defining
the axial electric field distribution for both the RVS and wire
model simultaneously.

A direct consequence of a nonzero displacement current is
that, for the proposed model, (4) does not hold. However, as an
approximation, one can form the Ampere’s law integral equa-
tions over and in Fig. 2(a) when deriving RVS update
equations, and apply thin-wire equations (10) and (14) as usual.
This results in similar stability constraints that are observed
when directly combining the standard wire model and RVS [8].

D. Thin-Wire Update Equations

The update equation for the radial electric field components
is given in (10). However, the update equation for the magnetic
field components looping the wire is slightly modified from (3)
by including the scaling factor of (11). For example, the
looping magnetic field at ( ) is given by

(14)

where is the dependent radial electric field. As stated
earlier, the computed magnetic field represents the de-
pendent looping magnetic field at distance from the wire
and the scaled value should be used in computation of all
adjacent electric field components.

Scaling factors and used in (10) and (14), respectively,
are the only modification to the standard thin-wire model [1] re-
quired for a wire with both ends connected to other metal struc-
tures. However, if the wire ends are unconnected, as is the case
in a wire antenna or the tip of a coaxial probe, the wire ends also
need to be considered.

III. W IRE END CAPS

A. Wire End-Cap Model

The basic principle of the proposed wire end-cap model is
similar to that used in frequency-domain method of moments
(MoM) code NEC-4 [7]. Let us consider a half-wave dipole in
free space. The current is zero at the antenna ends only if the
antenna is very thin. However, with a finite wire radius, a small
current is allowed to flow to the antenna end caps. As a result,
charge is accumulated at the antenna ends. The simplest approx-
imations for the charge distribution on the end cap are the uni-
form surface charge distribution used in [7] and the uniform line
charge distribution along the edge of the end cap. Both approxi-
mations are valid and either one of them could be chosen. In fact,
the effect on the wire model turned out to be practically iden-
tical for the two charge distributions. However, the line charge

Fig. 5. Geometry for evaluation of the field due to a charged end cap. The
geometry is similar to that used for a uniform surface charge density in [7].

distribution results in more compact expressions for the electric
field due to the charged end cap and is, therefore, adopted in the
proposed model.

Conservation of charge requires that at wire end [12]

(15)

where is the current density at the wire end andis the line
charge density on the edge of the end cap. Assuming static field
distribution, potential due to is given by Coulomb’s law [12]

(16)

where is the distance from a point within the line charge distri-
bution on to the observation point, andis the path enclosing
the end cap of the wire. The electric field due to the charge ac-
cumulated at the wire ends is computed from the potential using

(17)

The FDTD implementation of the model for the end caps re-
quires further approximations. Let us consider the top end of a
wire in the -direction, as shown in Fig. 5. The current at the
end of the wire is not available in FDTD. It is, therefore, ap-
proximated with the current at half a cell below the wire end.
Note that the current must travel half a cell distance to reach the
wire end in order to contribute to the surface charge at the end
cap. In addition, it takes a finite time for the electric field due to
the charge to reach the observation point [13]. However, it was
found that retarding the field does not significantly affect the re-
sults and was, therefore, not included in model. The change
in the total charge at the wire end is computed using (15). As-
suming the current constant for the duration of each time step

, we have

(18)

where the current is computed from the circulation of the mag-
netic field around the wire at half a cell below the wire end.
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The electric potential due to the charged end cap is computed
using Coulomb’s law resulting in

(19)

where is the wire radius, is the distance from a point within
the charge distribution to the observation point, and line charge
density is given by . Using the notation of Fig. 5,
the distance from the line charge to the observation point is
given by

(20)

where is the distance from the wire axis,is the distance from
the wire end in the axial direction,is the radius of the wire, and

is the angle in the transverse plane betweenand . Solving
the integral in (16) gives

(21)

where is the charge computed using (18),is a complete
elliptic integral of the first kind, and

(22)

The electric field due to the charged wire end cap is obtained
from potential using (17). However, in FDTD, we need to sep-
arate the axial-field component and the radial-field component.
The axial electric field is given by

(23)

Similarly, the radial electric field is given by

(24)

Solving (23) gives

(25)

where is a complete elliptic integral of the second kind and
is given by (22). Solving (24) gives outside the wire axis

(26)

where is a complete elliptic integral of the first kind, is a
complete elliptic integral of the second kind, andis given by
(22).

According to (16), we need the total charge at the wire end
to compute the electric potential due to the charge. However,
in (25) and (26), we only use the change in the total charge at
the wire end. This is because in FDTD the change in electric

field is computed at each time step, and the contribution of the
accumulated charge at the wire end is already included in the
previous value of the electric field. Adding the contribution due
to the change in charge at the end cap to the electric field at each
time step is equivalent to using the total accumulated charge to
compute the electric field due to charge, as required in (16).

Both the axial and radial electric fields due to the charge at
the wire end cap are rotationally symmetrical. However, there
is field variation in the axial direction. In FDTD, the field at the
midpoint of a surface is assumed to represent the average field
value through that surface [1]. Therefore, we need to average
the electric field due to the charged end cap over the respective
dual-grid cell facet. We emphasize that it is of utmost impor-
tance in FDTD that each field component represents the average
value of that field through a cell facet.

The axial electric field at above the wire end cap is
averaged over a dual-grid cell facet of size as follows:

(27)

where is given by (25). The averaged value
due to charged end cap will be added to the axial electric field
computed using the FDTD update equations. Let us then con-
sider the radial electric field in direction. In order to compute
the average value for the radial electric field at from wire
axis, we average the field in axial direction

(28)

where is given by (26). The averaged value
represents the average radial electric field through a

cylindrical surface such as surface in Fig. 4. Finally,
is projected to a dual-grid cell facet using the inverse of the
scaling factor of (11). The other radial electric field components
at wire end are obtained similarly.

Note that in (26) and (28) we assume that the wire does not
block the field contribution of the line charge observed below
the wire. However, below the wire end only part of the line
charge distributed along the edge of the end cap is “visible” to
the observation point. A simple approximation for the masking
effect is given by

(29)

where is the wire radius and is the transverse cell size. Note
that reduces to unity in the limit of an infinitely thin wire.

B. Approximate Solution to Averaging Integrals

Equations (27) and (28) can be evaluated numerically. For
the ease of implementation, we provide simple yet satisfactory
approximations to (27) and (28). Assuming

, the axial electric field due to the charged end cap can be
approximated by

(30)
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Fig. 6. Electric field components near the wire end. All electric field
components shown are affected by the charge at the end cap, except for the
axial electric field within the wire at (i; j; k � 1=2), which is identically
set to zero.

where constants , , and . The
point value of on the wire axis half a cell above the wire
end is given by

(31)

where is the wire radius. This approximation to the equation
(27) is accurate within 1% for .

The radial electric field due to the charged end cap can be
approximated by

(32)

where constants , , , and
. The point value of computed half a cell from

the wire axis in the radial direction is given by

(33)

where parameter is given by

(34)

The data for the elliptic integrals can be found using tabu-
lated data found in [14] or mathematics software such as Maple.
Equation (32) provides an approximation to (28) that is accurate
within 1% for .

C. Update Equations for Wire End Caps

Let us continue with a-directed wire in free space, as shown
in Fig. 6. The accumulated charge at wire ends contributes to

the electric field, resulting in an additional term in electric-field
update equations at wire ends. For example, the update equation
for the radial field in the -direction at the top end of the wire
is given by

(35)

where , , and are computed using (11), (29), and
(28), respectively. The scaling factor projects the radial
electric field due to the line charge to a Cartesian dual-cell facet.

The axial electric field component at the wire end also in-
cludes an additional term describing the accumulated charge at
the wire end. At the top end, we have

(36)

where the magnetic field components are computed using the
standard FDTD update equations. The additional terms in (35)
and (36) are assumed small compared to the total electric field.
Within this assumption, field variation near the wire can be as-
sumed unaffected by the additional term, and the field compo-
nent can be used in standard FDTD update equations.

IV. NUMERICAL RESULTS AND DISCUSSION

A. Half-Wave Dipole as a Transmitting Antenna

A 0.305-m half-wave dipole antenna was used to test the pro-
posed model. The antenna input resistance and reactance were
computed at frequency , where is the speed of
light and is the length of the dipole. The proposed model and
the standard thin-wire model [1] were tested for a wide range
of values for the wire radius. In addition, scattering parameter

to a 50- reference was computed for a thick and thin wire
in order to demonstrate how accurately the resonance frequency
is predicted.

In FDTD, a uniform grid was used. Two cell sizes were con-
sidered with 41 and 21 cells per dipole lengthresulting in
7.44- and 14.5-mm cells, respectively. In the proposed model,
the straight wire sections were modeled using (10) and (14).
At wire ends, (35) and (36) were also used. The computational
space extended at least ten cells from the antenna in each direc-
tion and was truncated using a perfectly matched layer (PML)
(8, P, 0.0001) absorbing boundary [15]. A simple delta-gap hard
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(a)

(b)

Fig. 7. Input impedance at frequencyf = c=2L, wherec is the velocity of
light in vacuum andL is the length of the dipole. (a) and (b) are plotted as
function of wire radiusa divided by dipole lengthL. The number in the legend
refers to the number of segments or cells used per antenna lengthL. (a) Input
resistance. (b) Input reactance.

source was used to excite the antenna [9]. In impedance calcu-
lations, the voltage values were interpolated in time to compen-
sate the half a time-step offset between the voltage and current
values.

The reference data were computed using NEC-2 [16]. The
ratio of the segment length and wire radius should be greater
than two when using the extended thin-wire kernel in NEC-2.
This limits the number of segments that can be used to model
a thick-wire antenna. For example, the smallest number of seg-
ments per dipole length used for the thickest antenna was 41,
resulting in a ratio of the segment length and wire radius of 2.5.
For thinner wires, the number of segments was gradually in-
creased up to 241 segments per dipole length.

The input impedance at frequency is shown
in Fig. 7. Using the proposed model, both input resistance
in Fig. 7(a) and input reactance in Fig. 7(b) are accurately

(a)

(b)

Fig. 8. jS j referenced to 50
. The number in the legend refers to the number
of segments or cells used per antenna lengthL. (a) Wire radiusa = 0:4�,
where� = L=41. (b) Wire radiusa = 0:05�, where� = L=41.

modeled over a wide range of values for the wire radius. As ex-
pected, a dense grid provides more accurate results. As shown in
Fig. 8, the resonance frequency of the dipole antenna is very ac-
curately predicted by the proposed model. The results are very
accurate for a thick wire [see Fig. 8(a)], while the error is grad-
ually increased, as the wire radius is decreased [see Fig. 8(b)].
The results indicate that the proposed model provides a signifi-
cant improvement compared to the standard model [1]. The im-
provement over the standard model is largely due to the end-cap
model.

The effect of the end-cap model on is illustrated in
Fig. 9. The dipole is modeled using the standard wire model and
the proposed model both with and without the end-cap model.
Again, the dipole was modeled using 41 and 21 cells per dipole
length . The results with the standard wire model and the pro-
posed model without the end-cap model suffer from a shift in
frequency toward dc. The difference between the results is due
to the inconsistent treatment of field components in the standard
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(a)

(b)

Fig. 9. Effect of the end-cap model onjS j of a 0.305-m dipole antenna with
wire radiusa = 0:1�, where� = L=41. jS j is referenced to 50
. The
text “NO CAP” in the legend refers to the result computed using the proposed
wire model without the end-cap model. The cell size is: (a)� = L=41 and (b)
� = L=21.

wire model. In contrast, a considerable improvement in results is
observed when the end-cap model is added to the proposed wire
model. For both grid resolutions considered, the results with the
end-cap model agree very well with the reference result.

An explanation can be found as follows. In FDTD, PEC ob-
jects appear larger than their nominal dimensions [18]. This is
also the case with PEC wires where the field singularity results
in a loss of the second-order accuracy of the FDTD algorithm
[19]. While the wire radius can be accurately controlled using
thin-wire models, the length of the wire is affected by the coarse-
ness error [6]. As a result, wires appear longer than their nominal
length. In the case of dipole antenna, the error in resonance fre-
quency due to the coarseness error has been shown to dominate
the error caused by numerical dispersion [6]. In Fig. 9, both the
standard and proposed models without an end-cap model suffer
mainly from the coarseness error. In contrast, the end-cap model
modifies the fields near wire ends such that the coarseness error

in the axial direction is reduced. The results with the end-cap
model indicate that part of the error in resonance frequency typ-
ically attributed to the dispersion error is, in fact, caused by the
coarseness error.

For further verification, the proposed wire model without the
end-cap model was compared to a filamentary PEC dipole. The
proposed model reduces exactly to a filamentary PEC wire when
the nominal wire radius is set to . This is in
agreement with the result for a 2-D TM-mode thin-wire model
[4], [5], providing further support for validity of the proposed
wire model. In contrast, the standard thin-wire model [1] re-
duces to a filamentary PEC wire when the nominal radius is set
to [17].

B. Half-Wave Dipole as a Receiving Antenna

In order to verify the proposed model for a receiving antenna,
two 0.305-m dipole antennas 20 cells apart were considered.
One antenna was used as a transmitter, while the other was used
as a receiver. The antennas were modeled using a uniform grid
with 41 cells per dipole length resulting in 7.44-mm cells.
An RVS with a 50- internal resistance was used for excitation,
and the receiving antenna was loaded with a 50-resistance
[11]. The reference result was computed using NEC-2, utilizing
a 50- load in both the transmitting and receiving antennas.

The coupling between antennas with is shown in
Fig. 10. Both magnitude and phase of follow closely the
reference result, indicating that the proposed model is also valid
for receiving antennas. The frequency shift present in the results
computed using the standard model [1] is mainly caused by the
coarseness error.

C. Application to Waveguide Probe Feed

In addition to simple wire antennas, metal wires are also used
as a part of the feed structure. A typical example is the coaxial
probe feed that can be used to excite, for example, patch an-
tennas and waveguides. In order to demonstrate the proposed
wire model as an important part of the coaxial probe feed struc-
ture, we consider input admittance of the probe-fed rectangular
waveguide described in [19]. As the effect of the end-cap model
is demonstrated in the previous two sections, we seek to illus-
trate the importance of correct averaging of the field compo-
nents discussed in Section II.

A cross-sectional view of the waveguide is shown in Fig. 11.
The waveguide is matched at both ends in the-direction and the
probe extends to the top of the waveguide. The end-cap model
was, therefore, not used with the proposed model. However, in
case the probe does not extend to the top of the waveguide, the
end-cap model should be included. The waveguide was mod-
eled using a cell grid truncated with the PML(8, P,
0.0001) absorbing boundary [15]. A 50-RVS with a sine-mod-
ulated Gaussian pulse centered at time step utilizing a

decay rate of 100 time steps and modulation frequency of
1.5 GHz was used to excite the waveguide. The time step was
set to 0.9 times the Courant limit.

The input admittance was computed as given in [21]. The
voltage values were interpolated in time to obtain voltage
at the same instant of time the current is defined. The input
impedance at above the bottom of the waveguide
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(a)

(b)

Fig. 10. S computed for two dipole antennas with wire radiusa = 0:1�,
where� = L=41, located 20 cells apart. (a) Magnitude. (b) Phase.

Fig. 11. Cross-sectional view of the coaxial probe feed of a rectangular
waveguide. The dimensions are identical to those given in [20],a = 3:1 mm,
b = 7:13 mm,h = 57 mm,d = 135 mm, ande=d = 0:5.

was then computed. Parameter referenced to 50 was
computed and shifted to the bottom of the waveguide by

Fig. 12. Input admittance of the waveguide.G andB refer to conductance and
susceptance, respectively. The theoretical and experimental data are extracted
from [20].

multiplying by . The input impedance (and
input admittance) at the bottom of the waveguide was finally
computed from the corrected .

The results are shown in Fig. 12. Both the real and imagi-
nary part of the input admittance are accurately modeled using
the proposed model. Comparison to the results with the stan-
dard wire model indicates that inconsistent treatment of field
components affects the accuracy of the standard model [1]. This
is especially the case in the feed region, where the current and
voltage computed form field quantities directly affect the com-
puted input admittance. For comparison, the simulation was re-
peated using the delta-gap hard source to excite the waveguide.
The results were identical to those shown in Fig. 12.

D. Stability

An analytical stability condition is not derived for the pro-
posed model. Instead, numerical tests were carried out using
both small and large values for a wire radius. In order to have
control over the size of the feed, the feed point was also mod-
eled using the thin-wire equations. A Gaussian pulse centered
at time step , utilizing a decay rate of 15 time steps
was used as an excitation waveform. The tests were carried out
using a uniform grid for a duration of 200 000 time steps.

Using a delta-gap hard source, the proposed model was found
stable for wire radii less than , where is the transverse cell
size. In fact, the proposed model was stable with and
a time step of 0.999 times the Courant limit [9], whereas with
the standard model time step needed to be reduced in order to
obtain stability with .

As discussed in Section II-C, connecting an RVS on a wire
limits the stable range of values for wire radiusand time step

. When using an RVS, the time step needed to be reduced
to 0.9 times the Courant limit in order to obtain stability with

. However, with the standard thin-wire model [1], the
time step needed to be reduced even further in order to obtain
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stability. This shows that the instability observed when using
both a large time step and large wire radiuswas not introduced
by the proposed model.

V. CONCLUSION

A new thin-wire model for FDTD has been proposed. The
proposed model can be applied to both connected and uncon-
nected wires. Special care is taken when connecting straight
wire sections to a Cartesian FDTD grid. In addition, an end-cap
model based on conservation of charge and Coulomb’s law to
treat unconnected wire ends has been proposed. The stability of
the model was investigated using numerical tests. The tests indi-
cate that the model is stable for wire radii less than , where

is the transverse cell size.
The model was evaluated by comparison to NEC-2 data using

a dipole antenna as a test structure. The results indicate that the
proposed model can be used to accurately model both transmit-
ting and receiving antennas. In addition, the proposed model
was applied to a waveguide problem to demonstrate validity of
the wire model as a part of a feed structure.
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